
Quickstrom Documentation
Release 0.5.0

Oskar Wickström

Nov 10, 2022

CONTENTS

1 Documentation 3

2 Staying Updated 5
2.1 Installation . 5
2.2 Topics . 7
2.3 Tutorials . 16
2.4 How-To Guides . 22
2.5 FAQ . 25

i

ii

Quickstrom Documentation, Release 0.5.0

Quickstrom is an autonomous testing tool for the web. It can find problems in any type of web application that renders to
the DOM. Quickstrom automatically explores your application and finds problems according to a specification. Focus
your effort on understanding and specifying your system, and Quickstrom can test it for you.

Interested? Let’s get started!

CONTENTS 1

Quickstrom Documentation, Release 0.5.0

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

If you’re new to Quickstrom, start here:

• Installation: how to get Quickstrom running on your computer

• Writing Your First Specification: the entry-level tutorial

The documentation is split up into sections depending on the type of document:

• Topics: high-level explanations of concepts and how they fit together

• Tutorials: step-by-step guides focused on learning

• How-To Guides: short guides to achieve specific goals

3

Quickstrom Documentation, Release 0.5.0

4 Chapter 1. Documentation

CHAPTER

TWO

STAYING UPDATED

Sign up for the the newsletter.

2.1 Installation

Follow these steps to install Quickstrom locally. These are the currently supported installation methods:

2.1.1 Installing with Nix

Follow these steps to install Quickstrom using Nix.

Prerequisites

• Nix (see nix.dev for installation instructions and guides)

Installing with Nix

To install the quickstrom executable, use Cachix and Nix to get the executable:

$ cachix use quickstrom
$ nix-env -iA quickstrom -f https://github.com/quickstrom/quickstrom/tarball/main

If you’re on Darwin, you’re probably going to have problems with Firefox and Chrome from nixpkgs. You can exclude
browsers from the Quickstrom environment and provide them on your own, e.g. through Homebrew. If you want to do
this, override it with this command:

$ nix-env -iA quickstrom -f https://github.com/quickstrom/quickstrom/tarball/main \
--arg includeBrowsers false

Verify that Quickstrom is now available in your environment:

$ quickstrom --help

You’re now ready to check webapps using Quickstrom.

5

https://buttondown.email/quickstrom
https://nix.dev/

Quickstrom Documentation, Release 0.5.0

2.1.2 Installing with Docker

QuickStrom provides a Docker image as an easy installation method. Download the image using Docker:

$ docker pull quickstrom/quickstrom:0.5.0

Verify that Quickstrom can now be run using Docker:

$ docker run quickstrom/quickstrom:0.5.0 \
quickstrom --help

You can now run Quickstrom checks:

1 $ docker run \
2 -v $PWD/specs:/specs \
3 quickstrom/quickstrom:0.5.0 \
4 quickstrom -I/specs \
5 check example \
6 https://example.com

There’s a lot of things going in the above command. Let’s look at what each line does:

1. Uses docker run to execute a program inside the container

2. Mounts a host directory containing specification(s) to /specs in the container filesystem

3. Uses the image quickstrom/quickstrom with the 0.5.0 tag

4. Runs quickstrom with the mounted /specs directory as an include path

5. Checks the example specificiation module (i.e. /specs/example.strom)

6. Passes an origin URI (this could also be a file path into the mounted directory)

2.1.3 Accessing a Server on the Host

If you wish to run Quickstrom in Docker and test a website being hosted by the Docker host system you can set the
URL to localhost (or host.docker.internal for MacOS).

1 $ docker run \
2 --network=host \
3 -v $PWD/specs:/specs \
4 quickstrom/quickstrom:latest \
5 quickstrom -I/specs \
6 check example \
7 http://localhost:3000 # or http://host.docker.internal:3000 for MacOS

You may have to disable HOST checking if you get “Invalid Host header” messages.

6 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

2.2 Topics

This section explains how the different parts of Quickstrom work and fit together at a high level.

2.2.1 How It Works

In Quickstrom, a tester writes specifications for web applications. When checking a specification, the following hap-
pens:

1. Quickstrom navigates to the origin page, and awaits the initial event (e.g. that the page has loaded).

2. Based on the current DOM state, it generates a random action to simulate user interaction. Many types of actions
can be generated, e.g. clicks, key presses, focus changes, reloads, navigations.

Only actions with their preconditions met can be chosen. For instance, you cannot click buttons that are currently
invisible.

3. After an action has been taken, Quickstrom queries and records the state of relevant DOM elements.

If the action takes specifies a timeout, Quickstrom waits the given duration for any asynchronous events to occur,
e.g. that a DOM node changed.

Steps 2 and 3 are repeated as long as the specification requires more states and actions. The recorded sequence
of states and actions is called a trace.

4. The specification defines one or more proposition to be checked. A proposition is a logical formula, which is
used to determine if the trace is successful or failed. As soon as a proposition has a definitive answer, the check
stops.

Now, how do you write specifications and propositions? Let’s have a look at The Specification Language.

2.2.2 The Specification Language

In Quickstrom, the intended behavior of a web application is described in a specification language called Specstrom.
It’s a propositional temporal logic with a functional expression language. Syntax-wise we try to keep the language
close to JavaScript, although semantically it’s quite different.

This document is a high-level and informal walkthrough of the language. Have a look at the paper Quickstrom:
Property-based Acceptance Testing with LTL Specifications if you’re interested in a more detailed description of the
underlying temporal logic, called QuickLTL.

Formulae

The top level construct in Quickstrom are linear temporal logic formulae, where you can describe how the state of the
web application should be now and in the future.

For example, if we want x to be true in the current state, and y in the next state, we can express it like this:

x && next y

If we want x to be true zero or more states until y becomes true, we say:

x until y

These examples are formulae, where x and y are free variables, and next and until are temporal operators.

2.2. Topics 7

https://arxiv.org/pdf/2203.11532.pdf
https://arxiv.org/pdf/2203.11532.pdf

Quickstrom Documentation, Release 0.5.0

Expressions

At a lower level we have an expression language, which is a functional language. We can do basic stuff like arithmetic
and comparisons:

x + y

x >= (y - z)

Boolean expressions are automatically lifted to the formulae level. Here’s an expression (x > y) which is lifted into a
formula (next ...):

next (x > y)

Selectors

A selector is a CSS selector written inside backticks, which evaluates to a list of elements. For example, the following
selector evaluates to a list of all button elements in a given state:

`button`

We can iterate over the list of elements and refer to attributes, properties, CSS styles, and more:

for b in `button` { b.textContent }

The example above evaluates to a list of strings.

If we’re only interested in the first element, we can directly select from it, as long as the list is not empty:

`button`.textContent

A selector’s evaluated is state-dependent, meaning that it can evaluate to different lists of elements depending on in
which state it is evaluated.

In the following example, we might not get the same list for both selectors, so it could be true:

length(`button`) == 1 && next (length(`button`) == 2)

Elements

The elements we get by evaluating selectors are objects. We can refer to various things in those objects to read relevant
state from the DOM:

enabled
is the element enabled?

visible
is the element visible?

interactable
is the element interactable (e.g. clickable)?

active
is the element active?

8 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

classList
a list of strings, based on the class attribute

css
a nested object with computed styles

attributes
a nested object with HTML element attributes

As a fallback, any other key is evaluated as a property on the corresponding runtime object of the element.

The Quickstrom expression `button`.textContent corresponds to the following JavaScript expression:

document.querySelector("button").textContent

Let Bindings

In expressions and in formulae, we bind values to names using let. The general form is:

let name = expression; body

If we need many bindings, we can put them on separate lines:

let foo = 1;
let bar = 2;
let baz = 3;
...

Let is also supported as a top-level construct in source files.

Lazy Bindings

When expressions in let bindings are state-dependent, like those involving selectors, we don’t want the expression to
be evaluated when bound. Instead we annotate the binding using a tilde prefix, meaning it’s a lazy binding:

let ~myButtons = `.btn`;

The expression, in this case `.btn`, is evaluated when another expression refers to myButtons and is itself evaluated.
Different evaluations of myButtonsmay result in different values, depending in which state the evaluation occurs. For
example, the formula next myButtons might not be equivalent to next (next myButtons).

Propositions

When testing web apps using Quickstrom, we define propositions and ask Quickstrom to check them for us. A propo-
sition is a formula defined at the top level. Useful propositions are state-dependent, so they are always bound lazily in
practice.

Let’s say we have some proposition bound to prop. We could check it like so:

import quickstrom;

let ~prop = ...;

check prop with * when loaded?;

2.2. Topics 9

Quickstrom Documentation, Release 0.5.0

Read more about the check statement in the Check section.

Temporal Operators

In Quickstrom specifications, there are a bunch of built-in temporal operators:

• next

• always

• until

There are also utility operators defined using the built-in temporal operators:

unchanged

Let’s go through the operators and utility functions provided by Quickstrom with some more examples!

Next

The formula next p says that the formula p is true in the next state.

But which state is “the next state”? It depends on which is the current state. Temporal operators are always in relation
to the current state.

Always

The formula always p says that the formula p is true in the current and all subsequent states.

As an example, in the following proposition we check that the heading is always "Home":

let ~title = `h1`.textContent;
let ~prop = always (title == "Home");

Until

The formula p until q says that the formula p is true at least until the formula q is true.

Note:

• It doesn’t matter if p is true or false once q is true. If we wanted that kind of exclusiveness, we could say p
until (q && not p).

• q can be true in the current state, in which case p never has to be true.

• q only has to be true in one state, it doesn’t have to stay true forever. If we want it true forever, we could say p
until (always q).

In the following example, we check that a loading indicator is shown until the page title is set correctly:

let ~title = `h1`.textContent;
let ~loading = `.loading`.textContent;
let ~prop = (loading == "Loading...") until (title == "Home");

10 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

Unchanged

The formula unchanged p says that p in the current state is equal to p in the next state. Or in other words, that p
doesn’t change from this state to the next.

This operator is useful when expressing state transitions, specifying that a certain queried value should be the same
both before and after a particular transition.

For instance, let’s say we have a bunch of top-level definitions, all based on DOM queries, describing a user profile:

let ~userName = ...;

let ~userProfileUrl = ...;

We can say that the user profile information should not change in a transition t by passing an array of those values:

let ~t = unchanged [userName, userProfileUrl]
&& ... // actual changes in transition
;

Actions

We must instruct Quickstrom what actions are allowed. Actions are declared at the top level using the action keyword.

action launchTheMissiles! = click!(`#launch`);

By convention, actions are suffixed with an exclamation mark. Events on the other hand are suffixed with a question
mark, but still declared using the action keyword:

action launched? = changed?(`#launch-status`)
when `#launch-status`.textContent == "Launched!";

Built-in Actions

The following actions and events are provided in the Quickstrom library:

• click!

• doubleClick!

• clear!

• focus!

• keyPress!

• enterText!

• enterTextInto!

• noop!

• changed?

• loaded?

Note: Support for more actions should be added.

2.2. Topics 11

Quickstrom Documentation, Release 0.5.0

Action Preconditions

Actions can be constraint to only be applicable under certain preconditions. We use the when construct to express a
precondition:

action launchTheMissiles! = click!(`#launch`) when canLaunch;

Many of the built-in actions in Quickstrom already have useful preconditions set, like click! only be applicable on
elements that are interactable and enabled. This means that we don’t have to specify such basic preconditions. It’s
more likely that preconditions will be domain-specific rules, if required at all.

Event Postconditions

Similar to action preconditions are event postconditions. They are used to declare an event that is only valid under
certain conditions.

For instance, a DOM element might have changed, but only if it’s changed in a certain way we considered it a specific
event. The launched? event we saw earlier is defined using a postcondition:

action launched? = changed?(`#launch-status`)
when `#launch-status`.textContent == "Launched!";

Check

We need to tell Quickstrom how to check a web application against a specification. We do that using the check
statement, which has this general form:

check <props> with <actions> when <initial event>;

The placeholders work this way:

<props>
This is wildcard matcher on all bindings in the current file. You can either literally refer to the propositions you
want (e.g. prop), or use a star to match against multiple propositions (e.g. prop_*).

<actions>
Also a wildcard matcher, matching on actions declared in the current file. In many cases this is just *.

<initial event>
The name of the initial event. The checker waits until this event occurs before it starts performing actions. In
many web applications scenarios it will be loaded?, but it might also be something more specialized.

As an example, we might end a specification with the following statement:

check prop* with * when loaded?;

12 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

State Machine Propositions

A powerful way of writing specifications is by expressing them as state machines. A transition is expressed as an
assertion about the current state and another assertion about the next state. The state machine proposition says that one
of the transitions are always taken.

Here’s an example based on a simple website with three pages:

let ~title = `h1`.textContent;

// Transitions

let ~goToAbout = title == "Home" && next title == "About";

let ~goToContact = title == "Home" && next title == "Contact";

let ~goHome = title != "Home" && next title == "Home";

// Proposition

let ~prop = always (goToAbout || goToContact || goHome);

The goToAbout, goToContact, and goHome transitions specify how the title of the page changes, and the prop thus
describes the system as a state machine. It can be visualized as follows:

Home

AboutgoToAbout

Contact

goToContact

goHome

goHome

2.2. Topics 13

Quickstrom Documentation, Release 0.5.0

Source Files

Specifications are written in source files with a .strom file extension. A file is a module, and the module name is the
filename without the .strom. extension.

Other modules can be imported using the import <module name>; syntax at the top of a module. For instance, if
we have a file foo.strom with the following contents:

Listing 1: foo.strom

let x = 1;

We can import the foo module from the bar module and refer to its bindings and actions:

Listing 2: bar.strom

import foo;

let y = x + 1;

The module system is very rudimentary. It works similarly as C header files with include guards. Bindings from
transitively imported modules are also available. Continuing on the example above, if a third module imported the bar
module, the x binding would also be in scope in baz.

Include Paths

Quickstrom has a list of include paths, i.e. directories in which it tries to find the files corresponding to imported
modules. The current working directory is implicitly an include path.

2.2.3 Checking

To check a web application against a specification, use the quickstrom check command. Supply the module name
of the specification along with the origin URL.

$ quickstrom check \
spec-module-name \
http://example.com

The origin can also be a local file:

$ quickstrom check \
spec-module-name \
/path/to/my/webapp.html

14 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

Cross-Browser Testing

Quickstrom currently supports these browsers:

• Firefox (firefox)

• Chrome/Chromium (chrome)

Unless specified, the default browser used is Firefox. To override, use the --browser option and set the appropriate
browser when running the check command:

$ quickstrom check \
--browser=chrome \
... # more options

You can also override which binary it uses when launching the browser:

$ quickstrom check \
--browser=chrome \
--browser-binary=/usr/bin/google-chrome-stable \
... # more options

2.2.4 Reporters

After a Quickstrom check completes, one or more reporters run. They report the result of the check in different formats.
The following reporters are available:

• console

• html

• json

Invoke reporters by passing the --reporter=<NAME> option to the check command.

Console

The console reporter is invoked by default. It prints a trace and summary to the console when a check fails. The trace
contains information about the state of queried elements at each state in the behavior, along with the actions taken by
Quickstrom.

HTML

The HTML reporter creates a report for web browsers in a given directory. The report is an interactive troubleshooting
tool based on state transitions, showing screenshots and overlayed state information for the queried elements.

To set the directory to generate the report in, use the option --html-report-directory=<DIR>.

Tip: If you run Quickstrom using Docker, make sure to generate the HTML report in a mounted directory so that you
can access it from the host.

2.2. Topics 15

Quickstrom Documentation, Release 0.5.0

JSON

The JSON report works similarly to the HTML report, except it generates only a JSON file and screenshots, no HTML
files. In the report directory you’ll find a file report.json that you can work with.

To set the directory to generate the report in, use the option --json-report-directory=<DIR>.

2.2.5 Troubleshooting

This documents collects some common problems and tips on how to identify what’s not working correctly.

If you’re troubleshooting a failing Quickstrom check, make sure to enable debug logs:

$ quickstrom --log-level=DEBUG check ...

Also, the underlying Specstrom interpreter outputs its log file in the current working directory, called interpreter.
log. Its location can be changed using the --interpreter-log-file=... option.

Finally, the Webdriver log can be stored by specifying --driver-log-file=....

2.3 Tutorials

2.3.1 Writing Your First Specification

In this tutorial we’ll specify and check an audio player web application using Quickstrom.

The tutorial assumes you’re running on a Unix-like operating system and that you have Docker installed. You may run
this using other installation methods, but all commands in this document are using Docker.

Open up a terminal and create a new directory to work in:

$ mkdir my-first-spec
$ cd my-first-spec

Installing with Docker

In this tutorial you need a working installation of Docker. Head over to docker.com and set it up if you haven’t already.

Next, pull the QuickStrom image using Docker:

$ docker pull quickstrom/quickstrom:0.5.0

Downloading the Audio Player

The web application we’re going to test is already written. Download it using curl:

$ curl -L https://github.com/quickstrom/quickstrom/raw/main/docs/source/_static/
→˓audioplayer/audioplayer.html -o audioplayer.html

If you don’t have curl installed, you can download it from this URL using your web browser. Make sure you’ve saved
it our working directory as audioplayer.html.

16 Chapter 2. Staying Updated

https://www.docker.com/
https://github.com/quickstrom/quickstrom/raw/main/docs/source/_static/audioplayer/audioplayer.html

Quickstrom Documentation, Release 0.5.0

$ ls
audioplayer.html

OK! We’re now ready to write our specification.

A Minimal Specification

We’ll begin by writing a specification that always makes the check pass. Create a new file audioplayer.strom and
open it in your text editor of choice:

$ touch audioplayer.strom
$ $EDITOR audioplayer.strom

Type in the following in the file and save it:

1 import quickstrom;
2

3 action ~playOrPause! = click!(`.play-pause`);
4

5 let ~proposition = true;
6

7 check proposition with * when loaded?;

A bunch of things are going on in this specification. Let’s break it down line by line:

• Line 1: We import the Quickstrom module. This is where we find definitions for DOM queries, actions, and
logic. We also import Maybe which we’ll need later on.

• Line 3: Our actions specify what Quickstrom should try to do. In this case, we want it to click the play/pause
button.

• Line 5: In the proposition, we specify what it means for the system under test to be valid. For now, we’ll set
it to true, meaning that we require only a single state, and that any such state is considered valid.

• Line 7: The check statement tells Quickstrom how to test our application. We ask it to check our defined
proposition, with all declared actions, once the loaded? event has occured.

Running a Test

Let’s run some tests! Launch Quickstrom from within your my-first-spec directory:

$ docker run --shm-size=1g --rm \
-v $PWD:/my-first-spec \
quickstrom/quickstrom:0.5.0 \
quickstrom -I/my-first-spec check \
audioplayer \
/my-first-spec/audioplayer.html \
--browser=chrome

You should see output like the following:

The test passed.

2.3. Tutorials 17

Quickstrom Documentation, Release 0.5.0

Cool, we have it running! So far, though, we haven’t done much testing. Quickstrom doesn’t do more than the spec-
ification requires, and right now any initial state is good enough, so it doesn’t perform any actions. Let’s make our
specification say something about the audio player’s intended behavior.

Refining the Proposition

Our system under test (audioplayer.html) is very simple. There’s a button for playing or pausing the audio player,
and there’s a time display.

Our specification will describe how the player should work. Informally, we state the requirements as follows:

• Initially, the player should be paused

• When paused, and when the play/pause button is clicked, it should transition to the playing state

• When in the playing state, the time display should reflect the progress with a ticking minutes and seconds
display

• When playing, and when the play/pause button is clicked, it should go to the paused state, and time should not
change

• In the paused state, the button should say “Play”

• In the playing state, the button should say “Pause”

Let’s translate those requirements to a formal specification in Quickstrom.

Begin by defining two element helpers, extracting the text content of the play/pause button, and extracing and parsing
the time display text. The time is represented as total number of seconds in our specification, making it easier to
compare.

Place these just after the imports section in audioplayer.strom:

let ~buttonText = `.play-pause`.textContent;

let ~timeInSeconds =
let [minutes, seconds] = split(":", `.time-display`.textContent);
parseInt(minutes) * 60 + parseInt(seconds);

Next, we’ll define the two states as booleans:

let ~playing = buttonText == "Pause";

let ~paused = buttonText == "Play";

We also need to declare the actions a bit more precisely. Change to existing action declartion to the following:

action ~pause! = click!(`.play-pause`) when playing;

action ~play! = click!(`.play-pause`) when paused;

Finally, we’ll change the proposition. Remove true and type in the following code:

let ~proposition =
let ~play = ...;
let ~pause = ...;
let ~tick = ...;
paused && (always {20} (play || pause || tick));

18 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

Note: The ... parts aren’t valid ecpressions, but we’ll replace them with valid ones in the next section.

The last line in our proposition can be read in English as:

Initially, the record player is paused. From that point, one can either play or pause, or the time can tick
while playing, all indefinitely.

OK, onto adding the missing parts!

The Missing State Transitions

We have a bunch of ... placeholders in our state transition formulae. Let’s fill them in!

The definition play describes a transition between paused and playing:

let ~play =
paused
&& nextT playing
&& unchanged(timeInSeconds);

OK, so what’s going on here? We specify that the current state is paused, and that the next state is playing. That’s
how we encode state transitions. We also say that the time shouldn’t change.

Note: We need to use nextT instead of next here, because we don’t want to force another state being read. If there
is a next state available, we say that it should be playing, otherwise we default to true. That’s what the T in nextT
means.

The pause transition should look similar:

let ~pause =
playing
&& nextT paused
&& unchanged(timeInSeconds);

Finally, we have the tick. When we’re in the playing state, the time changes on a tick. The time should be
monotonically increasing, so we compare the current and the next time:

let ~tick =
playing
&& nextT playing
&& (let old = timeInSeconds; nextT (old < timeInSeconds));

That’s it! Your proposition should now look something like this:

let ~proposition =
let ~play =
paused
&& nextT playing
&& unchanged(timeInSeconds);

let ~pause =
playing

(continues on next page)

2.3. Tutorials 19

Quickstrom Documentation, Release 0.5.0

(continued from previous page)

&& nextT paused
&& unchanged(timeInSeconds);

let ~tick =
playing
&& nextT playing
&& (let old = timeInSeconds; nextT (old < timeInSeconds));

paused && (always {20} (play || pause || tick));

Let’s run some more tests.

Catching a Bug

Run Quickstrom again, now that we’ve fleshed out the specification:

$ docker run --shm-size=1g --rm \
-v $PWD:/my-first-spec \
quickstrom/quickstrom:0.5.0 \
quickstrom -I/my-first-spec check \
audioplayer \
/my-first-spec/audioplayer.html \
--browser=chrome

You’ll see a bunch of output, involving shrinking tests and more. It should end with something like the following:

Transition #1

Actions and events:

- click('33a4c299-a382-44c2-870e-b48335f9c23a')

State difference:

`.play-pause`

33a4c299-a382-44c2-870e-b48335f9c23a 33a4c299-a382-44c2-870e-b48335f9c23a
enabled: true enabled: true
interactable: true interactable: true
textContent: "Play" textContent: "Play"
visible: true visible: true

`.time-display`

bd797365-5239-4a9b-9976-942288bd227a bd797365-5239-4a9b-9976-942288bd227a
textContent: "00:00" textContent: "00:00"

Look, we’ve found our first bug using Quickstrom! It seems clicking the play/pause doesn’t do anything. It should
change the label to “Pause” to indicate it’s in the playing state.

20 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

The problem is the button text. Open up audioplayer.html, and change the following function called
playPauseLabel:

function playPauseLabel(state) {
let label;
switch (state) {
case "playing":

label = "Pause";
case "paused":

label = "Play";
}
return label;

}

It should be:

function playPauseLabel(state) {
switch (state) {
case "playing":

return "Pause";
case "paused":

return "Play";
}

}

Are we done? Is the audio player correct? Not quite.

Transitions Based on Time

The audio player transitions between states mainly as a result of user action, but not only. A tick transition (going
from playing to playing with an increased time) is triggered by time.

In addition to our play! and pause! actions, we’ll add a wait! action. It does nothing for at most two seconds, until
either something happens (a tick? event) or a timeout:

action ~wait! = noop! timeout 2000;

But this means we have to allow nothing to change. This is often called a stutter state. Let’s do that, but only in
combination with a noop! action. Add one more state transition to the proposition:

let ~proposition =
...
let ~wait =
nextT (contains(noop!, happened))
==> unchanged([timeInSeconds, playing]);

paused && (always {20} (
play
|| pause
|| tick
|| wait

));

Run another check by executing the same command as before:

2.3. Tutorials 21

Quickstrom Documentation, Release 0.5.0

$ docker run --shm-size=1g --rm \
-v $PWD:/my-first-spec \
quickstrom/quickstrom:0.5.0 \
quickstrom -I/my-first-spec check \
audioplayer \
/my-first-spec/audioplayer.html \
--browser=chrome

You should see output such as the following:

parseInt could not parse: "NaN"
ParseInt @ /my-first-spec/audioplayer.strom:15:2
<fun> @ /nix/store/xradz0aav0ijajw91x1vqfqsprgipfhx-specstrom/share/ulib/control.

→˓strom:30:21

Whoops, look at that! It crashes because the time display shows “NaN”, which is definitely not intended behavior.
Open up audioplayer.html, and change the following lines near the end of the file:

case "pause":
return await inPaused();

They should be:

case "pause":
return await inPaused(time); // <-- this is where we must pass in time

Rerun the check using the same quickstrom command as before. It passes!

Summary

Congratulations! You’ve completed the tutorial, created your first specification, and found multiple bugs.

Have we found all bugs? Possibly not. This is the thing with testing. We can’t know if we’ve found all problems.
However, with Quickstrom you can increase your confidence in the correctness of your web app, especially if you
continously run tests on it.

This tutorial is intentionally fast-paced and low on theory. Now that you’ve got your hands dirty, it’s a good time to
check out The Specification Language to learn more about the operators in Quickstrom.

2.4 How-To Guides

Achieve specific goals with these cookbook-style guides. They’re not as thorough as the Tutorials and normally expect
you to know how to set up and run Quickstrom already.

22 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.5.0

2.4.1 Broken Links

This is simple specification used for finding broken internal links. External links are not followed. It’s based on Domen
Kožar’s gist.1

import quickstrom;

// Only links beginning with a slash and ending
// with .html are followed. We could also use
// an absolute base URL, e.g:
//
// a[href^='https://example.com']
//
action ~navigate! =
click!(`a[href^='/'][href$='.html']`);

// We're interested in finding links that lead
// to pages rendered with these status codes in
// the heading.
let patterns = ["404", "500"];

// In our system's error pages, status codes
// are rendered in an <h1> element.
let ~heading =
let h1 = first(`h1`);
h1.textContent when h1 != null;

// Check if the heading has any of the error
// codes in the text.
let ~hasErrorCode =
exists p in patterns {
contains(p, heading)

};

// This is the safety property. At no point,
// following only internal links, should we
// see error codes.
let ~proposition = always (not hasErrorCode);

check proposition with * when loaded?;

Tweak the patterns and the predicate to fit your use case. You might not have status codes rendered, but texts like “Page
not found” or “Access denied”.

1 Domen Kožar wrote the original specification for Cachix using one of the first versions of Quickstrom, and published it along with a GitHub
Actions setup: https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad

2.4. How-To Guides 23

https://cachix.org
https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad

Quickstrom Documentation, Release 0.5.0

2.4.2 Testing in GitHub Actions

Quickstrom can be run in a continuous integration (CI) workflow to find problems early. Here’s a configuration for
GitHub Actions that checks a website on every commit to the main branch. It’s based on Domen Kožar’s gist.1

name: "Quickstrom integration tests"
on:
push:
branches:
- main

jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2.3.4

We use `install-nix-action` and `cachix-action` to quickly install
Quickstrom from a binary cache.
- uses: cachix/install-nix-action@v18
- uses: cachix/cachix-action@v12
with:
name: quickstrom

- run: nix-env -iA quickstrom -f https://github.com/quickstrom/quickstrom/tarball/0.
→˓5.0

Now, run tests! This assumes there's a file called
`example.strom` in the root of the GitHub repository.
- run: quickstrom check example https://example.com --reporter=html --html-report-

→˓directory=report

Finally, we archive HTML report as an artifact. This
can be downloaded an inspected after failed checks.
- name: Archive test results
uses: actions/upload-artifact@v3
with:
name: test-report
path: report

Replace the placeholder paths and URLs.

Next Steps

• You might want to run tests in Chrome instead. See Checking for instructions on using other browsers.

• If you’d like to check multiple specs and in multiple browsers, see matrix configurations in the GitHub Actions
documentation.

1 Domen Kožar wrote the original GitHub Action configuration for Cachix: https://gist.github.com/domenkozar/
71135bf7aa6d50d6911fb74f4dcb4bad

24 Chapter 2. Staying Updated

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idstrategymatrix
https://cachix.org
https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad
https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad

Quickstrom Documentation, Release 0.5.0

2.5 FAQ

Here are some frequently asked questions about Quickstrom:

2.5.1 Isn’t this just property-based testing for web applications?

Quickstrom definitely is a form of property-based testing (PBT), but it’s not only that. Being specifically designed for
testing web applications, Quickstrom can reduce the amount of work you need to do in order to test properties of your
system:

• Quickstrom discovers and performs actions automatically

• You specify only the properties you care about, and you don’t have to write a fully functional model

• Quickstrom aims to (in the future) perform fault injection automatically, such as delaying, cancelling, or manip-
ulating XHR responses, run in concurrent tabs, manipulate cookies or web storage, etc

It might be useful to think of Quickstrom as a mix of PBT, black-box browser testing, and a specification system like
TLA+. One aim is “to be the Jepsen for web applications.”

2.5.2 Why should I use Quickstrom instead of a model-based property test?

You might argue that this is just property-based testing, and that you could do this with state machine testing. And
you’d be right! Similar tests could be written using a state machine model, WebDriver, and property-based testing.

With Quickstrom, however, you don’t have to write a model that fully specifies the behavior of your system. Instead,
you describe the most important state transitions and leave the rest unspecified. You can gradually adopt Quickstrom
and improve your specifications over time.

Furthermore, in problem domains where there’s lots of of essential complexity, models tend to become as complex.
For example, it’s often hard to find a naive implementation for your model when your modelling a business system with
a myriad of arbitrary rules.

Finally, by using linear temporal logic, we can express safety and liveness properties in specifications. This is something
that you’d have to build yourself on top of regular property tests.

2.5. FAQ 25

http://jepsen.io/

	Documentation
	Staying Updated
	Installation
	Installing with Nix
	Prerequisites
	Installing with Nix

	Installing with Docker
	Accessing a Server on the Host

	Topics
	How It Works
	The Specification Language
	Formulae
	Expressions
	Selectors
	Elements
	Let Bindings
	Lazy Bindings
	Propositions
	Temporal Operators
	Next
	Always
	Until
	Unchanged

	Actions
	Built-in Actions
	Action Preconditions
	Event Postconditions

	Check
	State Machine Propositions
	Source Files
	Include Paths

	Checking
	Cross-Browser Testing

	Reporters
	Console
	HTML
	JSON

	Troubleshooting

	Tutorials
	Writing Your First Specification
	Installing with Docker
	Downloading the Audio Player
	A Minimal Specification
	Running a Test
	Refining the Proposition
	The Missing State Transitions

	Catching a Bug
	Transitions Based on Time
	Summary

	How-To Guides
	Broken Links
	Testing in GitHub Actions
	Next Steps

	FAQ
	Isn’t this just property-based testing for web applications?
	Why should I use Quickstrom instead of a model-based property test?

