
Quickstrom Documentation
Release 0.1.0

Oskar Wickström

Nov 04, 2022

CONTENTS

1 Documentation 3

2 Staying Updated 5
2.1 Installation . 5
2.2 Topics . 7
2.3 Tutorials . 15
2.4 How-To Guides . 22
2.5 FAQ . 24

i

ii

Quickstrom Documentation, Release 0.1.0

Quickstrom is a new autonomous testing tool for the web. It can find problems in any type of web application that renders
to the DOM. Quickstrom automatically explores your application and presents minimal failing examples. Focus your
effort on understanding and specifying your system, and Quickstrom can test it for you.

Interested? Let’s get started!

CONTENTS 1

Quickstrom Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

If you’re new to Quickstrom, start here:

• Installation: how to get Quickstrom running on your computer

• Writing Your First Specification: the entry-level tutorial

The documentation is split up into sections depending on the type of document:

• Topics: high-level explanations of concepts and how they fit together

• Tutorials: step-by-step guides focused on learning

• How-To Guides: short guides to achieve specific goals

3

Quickstrom Documentation, Release 0.1.0

4 Chapter 1. Documentation

CHAPTER

TWO

STAYING UPDATED

Sign up for the the newsletter.

2.1 Installation

Follow these steps to install Quickstrom locally. These are the currently supported installation methods:

2.1.1 Installing with Nix

Follow these steps to install Quickstrom using Nix.

Prerequisites

• Nix (see nix.dev for installation instructions and guides)

Installing with Nix

To install the quickstrom executable, use Cachix and Nix to get the executable:

$ cachix use quickstrom
$ nix-env -iA quickstrom -f https://github.com/quickstrom/quickstrom/tarball/main

Note: If the installation fails with “too many open files”, see How do I set the ulimit in a nix build shell?.

Verify that Quickstrom is now available in your environment:

$ quickstrom version

You need to run a WebDriver server for Quickstrom checks to work. This user documentation mostly uses GeckoDriver
and Firefox, but you can use other browsers and WebDriver servers.

Install GeckoDriver using Nix:

$ nix-env -i geckodriver

You’re now ready to check webapps using Quickstrom.

5

https://buttondown.email/quickstrom
https://nix.dev/
https://stackoverflow.com/questions/49301678/how-do-i-set-the-ulimit-in-a-nix-build-shell

Quickstrom Documentation, Release 0.1.0

2.1.2 Installing with Docker

QuickStrom provides a Docker image as an easy installation method. Download the image using Docker:

$ docker pull quickstrom/quickstrom:latest

Verify that Quickstrom can now be run using Docker:

$ docker run quickstrom/quickstrom:latest quickstrom version

Installing a WebDriver Server

A WebDriver server must be running and available on 127.0.0.0:4444 for Quickstrom to work. In this example we’ll
use Geckodriver and Firefox. Download a Geckodriver image using Docker:

$ docker pull instrumentisto/geckodriver

You can now run Geckodriver and the quickstrom executable with docker run:

1 $ docker run -d -p 4444:4444 instrumentisto/geckodriver
2 $ docker run \
3 --network=host \
4 --mount=type=bind,source=$PWD/specs,target=/specs \
5 quickstrom/quickstrom:latest \
6 quickstrom check \
7 /specs/Example.spec.purs \
8 https://example.com

There’s a lot of things going in the above session. Let’s look at what each line does:

1. Launch a geckodriver instance in a separate detached container

2. Uses docker run to execute a program inside the container

3. Uses host network to get easy access to Geckodriver (see below)

4. Mounts a host directory containing specification(s) to /specs in the container filesystem

5. Uses the image quickstrom/quickstrom with the latest target

6. Runs quickstrom with the check command

7. Passes a path to a specification file in the mounted directory

8. Passes an origin URI (this could also be a file path in the mounted directory)

There are other ways of setting up network access between Docker containers. Using host networking is convenient in
this case, but you might require or prefer another method.

6 Chapter 2. Staying Updated

https://docs.docker.com/network/host/
https://docs.docker.com/engine/reference/run/#network-settings

Quickstrom Documentation, Release 0.1.0

2.1.3 Accessing a Server on the Host

If you wish to run Quickstrom in Docker and test a website being hosted by the Docker host system you can set the url
to localhost (or host.docker.internal for MacOS).

1 $ docker run \
2 --network=host \
3 --mount=type=bind,source=$PWD/specs,target=/specs \
4 quickstrom/quickstrom:latest \
5 quickstrom check \
6 /specs/Example.spec.purs \
7 http://localhost:3000 # or http://host.docker.internal:3000 for MacOS (You may have to␣

→˓disable HOST checking if you get "Invalid Host header" messages)

2.2 Topics

This section explains how the different parts of Quickstrom work and fit together at a high level.

2.2.1 How It Works

In Quickstrom, a tester writes specifications for web applications. When checking a specification, the following hap-
pens:

1. Quickstrom navigates to the origin page, and awaits the readyWhen condition, that a specified element is present
in the DOM.

2. It generates a random sequence of actions to simulate user interaction. Many types of actions can be generated,
e.g. clicks, key presses, focus changes, reloads, navigations.

3. Before each new action is picked, the DOM state is checked to find only the actions that are possible to take.
For instance, you cannot click buttons that are not visible. From that subset, Quickstrom picks the next action to
take.

4. After each action has been taken, Quickstrom queries and records the state of relevant DOM elements. The
sequence of actions takens and observed states is called a behavior.

5. The specification defines a proposition, a logical formula that evaluates to true or false, which is used to determine
if the behavior is accepted or rejected.

6. When a rejected behavior is found, Quickstrom shrinks the sequence of actions to the smallest, still failing,
behavior. The tester is presented with a minimal failing test case based on the original larger behavior.

Now, how do you write specifications and propositions? Let’s have a look at The Specification Language.

2.2.2 The Specification Language

In Quickstrom, the behavior of a web application is described in a specification language. It’s a propositional temporal
logic and functional language, heavily inspired by TLA+ and LTL, most notably adding web-specific operators. The
specification language of Quickstrom is based on PureScript.

Like in TLA+, specifications in Quickstrom are based on state machines. A behavior is a finite sequence of states. A
step is a tuple of two successive states in a behavior. A specification describes valid behaviors of a web application in
terms of valid states and transitions between states.

2.2. Topics 7

https://www.purescript.org/

Quickstrom Documentation, Release 0.1.0

As in regular PureScript, every expression evaluates to a value. A proposition is a boolean expression in a specification,
evaluating to either true or false. A specification that accepts any behavior could therefore be:

module Spec where

proposition = true

... -- more definitions, explained further down

To define a useful specification, though, we need to perform queries and describe how things change over time (using
temporal operators).

Queries

Quickstrom provides two ways of querying the DOM in your specification:

• queryAll

• queryOne

Both take a CSS selector and a record of element state specifiers, e.g. attributes or properties that you’re interested in.

For example, the following query finds all buttons, including their text contents and disabled flags:

myButtons = queryAll "button" { textContent, disabled }

The type of the above expression is:

Array { textContent :: String, disabled :: Boolean }

You can use regular PureScript function to map, filter, or whatever you’d like, on the array of button records.

In contrast to queryAll returning an Array, queryOne returns a Maybe.

Temporal Operators

In Quickstrom specifications, there are three core temporal operators:

• next :: forall a. a -> a

• always :: Boolean -> Boolean

• until :: Boolean -> Boolean -> Boolean

They change the modality of the sub-expression, i.e. in what state of the recorded behavior it is evaluated.

There are also utility functions built on top of the temporal operators:

• unchanged :: Eq a => a -> Boolean

Let’s go through the operators and utility functions provided by Quickstrom!

8 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.1.0

Always

Let’s say we have the following proposition:

proposition = always (title == Just "Home")

title = map _.textContent (queryOne "h1" { textContent })

In every observed state the sub-expression must evaluate to true for the proposition to be true. In this case, the text
content of the h1 must always be “Home”.

Until

Until takes two parmeters: the prerequisite condition and the final condition. The prerequisite must hold true in all
states until the final condition is true.

proposition = until (loading == Just "loading...") (title == Just "Home")

loading = map _.textContent (queryOne "loading" { textContent })
title = map _.textContent (queryOne "h1" { textContent })

In this case, we presumably load the “Home” text from somewhere else, so we wait until the loading is done, and then
assert that the title must be set accordingly.

Next

Let’s modify the previous proposition to describe a state change:

proposition = always (goToAbout || goToContact || goHome)

goToAbout = title == Just "Home" && next title == Just "About"

goToContact = title == Just "Home" && next title == Just "Contact"

goHome = title /= Just "Home" && next title == Just "Home"

title = map _.textContent (queryOne "h1" { textContent })

We’re now saying that it’s always the case that one or another state transition occurs. An state transition is represented
as a boolean expression, using queries and next to describe the current and the next state.

The goToAbout, goToContact, and goHome transitions specify how the title of the page changes, and the
proposition thus describes the system as a state machine. It can be visualized as follows:

2.2. Topics 9

Quickstrom Documentation, Release 0.1.0

Home

AboutgoToAbout

Contact

goToContact

goHome

goHome

Unchanged

In addition to the core temporal operators, the unchanged operator is a utility for stating that something does not
change:

unchanged :: forall a. Eq a => a -> Boolean
unchanged x = x == next x

It’s useful when expressing state transitions, specifying that a certain queried value should be the same both before and
after a particular transition.

For instance, let’s say we have a bunch of top-level definitions, all based on DOM queries, describing a user profile:

userName :: String
userName = ...

userProfileUrl :: String
userProfileUrl = ...

We can say the user profile information should not change in a transition t by passing an array of those values:

t = unchanged [userName, userProfileUrl]
&& ... -- actual changes in transition

10 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.1.0

Actions

We must instruct Quickstrom what actions it should try. The actions definition in a specification module is where
you list possible actions.

actions :: Actions
actions = [action1, action2, ...]

It’s an array of values, where each value describes an action or a fixed sequence of actions. Each action also carries a
weight, which specifies the intended probability of the action being picked, relative to the other actions.

The default weight is 1. To override it, use the weighted function:

click "#important-action" `weighted` 10

To illustrate, in the following array of actions, the probability of a1 being picked is 40%, while the others are at 20%
each. This is assuming the action (or the first action in each sequence) is possible at each point a sequence is being
picked.

actions = [
a1 `weighted` 2,
a2,
a3,
a4

]

Action Sequences

An action sequence is either a single action or a fixed sequence of actions. Here’s a simple sequence:

backAndForth = click "#back" `followedBy` click "#forward"

A sequence of actions is always performed in its entirety when picked, as long as the first action in the sequence is
considered possible by the test runner.

Actions

The available actions are provided in the Quickstrom library:

• focus

• keyPress

• enterText

• click

• clear

• await

• awaitWithTimeoutSecs

• navigate

• refresh

Along with those functions, there are some aliases for common actions. For instance, here’s the definition of foci:

2.2. Topics 11

Quickstrom Documentation, Release 0.1.0

-- | Generate focus actions on common focusable elements.
foci :: Actions
foci =

[focus "input"
, focus "textarea"
]

More actions and aliases should be introduced as Quickstrom evolves.

Example

As an example of composing actions and sequences of actions, here’s a collection of actions that try to log in or to click
a buy button:

actions =
[focus "input[type=password]"

`followedBy` enterText "$ecr3tz"
`followedBy` click "input[type=submit][name=log-in]"

, click "input[type=submit][name=buy]"
]

Note: When specifying complex web applications, one must often carefully pick selectors, actions, and weights, to
effectively test enough within a reasonable time. Aliases like clicks and foci might not work well in such situations.

2.2.3 Checking

To check a web application against a specification, use the quickstrom check command. Supply the path to the
specification file along with the origin URL.

$ quickstrom check \
/path/to/my/specification \
http://example.com

The origin can also be a local file:

$ quickstrom check \
/path/to/my/specification \
/path/to/my/webapp.html

Note: To check a specification, you must have a running WebDriver server. Most guides in this user documentation
use GeckoDriver and Firefox. Other options are discussed below.

12 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.1.0

Cross-Browser Testing

Quickstrom currently supports these browsers:

• Firefox (firefox)

• Chrome/Chromium (chrome)

Unless specified, the default browser used is Firefox. To override, use the --browser option and set the appropriate
browser when running the check command:

$ quickstrom check \
--browser=chrome \
... # more options

If you need to specify the executable, use --browser-binary:

$ quickstrom check \
--browser=chrome \
--browser-binary=/path/to/google-chrome \
... # more options

WebDriver Options

If your WebDriver server is running on a different host, port, or path than the default (http://127.0.0.1:4444), you
can override those options:

$ quickstrom check \
--webdriver-host=hub.example.com \
--webdriver-port=12345 \
--webdriver-path="/wd/hub" \
... # more options

2.2.4 Trailing State Changes

By default, Quickstrom only listens for a single DOM state change after each action it performs. This behavior can be
overriden, so that it waits for a configurable number of trailing state changes.

The term trailing refers primarily to asynchronous changes that occur as result of an action. For example:

• the user agent clicks a button

• a loading indicator is shown immediately

• an HTTP request is performed

• later, the result of the request is printed

In this example, the loading indicator being shown is the first state change. The result of the HTTP request being shown
is the trailing state change.

Some systems change the state of the DOM without any dependence on user action, and do so infinitely. For instance,
a clock (hopefully) keeps ticking, no matter what the user is up to. It doesn’t make much sense to think of a clock’s
behavior as “trailing”. However, it’s still possible to test a finite subsequence of such a behavior using Quickstrom and
trailing state changes.

2.2. Topics 13

Quickstrom Documentation, Release 0.1.0

Command-Line Options

The command-line options available are:

• --max-trailing-state-changes=NUMBER: how many trailing state changes Quickstrom will try to observe.

• --trailing-state-change-timeout=MILLISECONDS: maximum time that it will wait for a change of DOM
state. The timeout doubles for every subsequent trailing state change that is awaited.

Let’s say we set the following options:

--max-trailing-state-changes=3
--trailing-state-change-timeout=200

Then the DOM state changes would be observed at the following times:

1. initial state, immediately

2. first trailing state, at most 200ms after #1

3. second trailing state, at most 400ms after #2

4. third trailing state, at most 800ms after #3

It’s at most, because Quickstrom observes the DOM and can pick up state changes as they happen.

2.2.5 Reporters

After a Quickstrom check completes, one or more reporters run. They report the result of the check in different formats.
The following reporters are available:

• console

• html

• json

Invoke reporters by passing the --reporter=<NAME> option to the check command.

Console

The console reporter is invoked by default. It prints a trace and summary to the console when a check fails. The trace
contains information about the state of queried elements at each state in the behavior, along with the actions taken by
Quickstrom.

HTML

The HTML reporter creates a report for web browsers in a given directory. The report is an interactive troubleshooting
tool based on state transitions, showing screenshots and overlayed state information for the queried elements.

To set the directory to generate the report in, use the option --html-report-directory=<DIR>.

The HTML report directory must be served through an HTTP server in order to avoid problems with CORS. If you
have Python 3 installed, serve it with the following command:

$ python3 -m http.server -d <DIR>

14 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.1.0

JSON

The JSON report works similarly to the HTML report, except it generates only a JSON file and screenshots, no HTML
files. In the report directory you’ll find a file report.json that you can work with.

To set the directory to generate the report in, use the option --json-report-directory=<DIR>.

2.2.6 Troubleshooting

This documents collects some common problems and tips on how to identify what’s not working correctly.

If you’re troubleshooting a failing Quickstrom check, make sure to enable debug logs:

$ quickstrom check --log-level=DEBUG ...

No WebDriver Session

If you get the following error when using GeckoDriver (especially after having successfully run before):

quickstrom: user error (E NoSession)

It’s probably because the WebDriver package in Quickstrom failed to clean up its session. This is a known bug. To
work around it, restart Geckodriver and rerun your Quickstrom command.

2.3 Tutorials

The following tutorials are detailed end-to-end guides to help you learn how to use Quickstrom.

2.3.1 Writing Your First Specification

In this tutorial we’ll specify and check an audio player web application using the free version of Quickstrom.

The tutorial assumes you’re running on a Unix-like operating system and that you have Docker installed. You may run
this using other installation methods for Quickstrom and your WebDriver server, but all commands in this document
are using Docker.

Open up a terminal and create a new directory to work in:

$ mkdir my-first-spec
$ cd my-first-spec

Installing with Docker

In this tutorial you need a working installation of Docker. Head over to docker.com and set it up if you haven’t already.

Next, pull the QuickStrom image using Docker:

$ docker pull quickstrom/quickstrom:latest

Finally, we need a WebDriver server. Pull that down with Docker, too:

2.3. Tutorials 15

https://www.docker.com/

Quickstrom Documentation, Release 0.1.0

$ docker pull selenium/standalone-chrome:3.141.59-20200826

Downloading the Audio Player

The web application we’re going to test is already written. Download it using curl:

$ curl -L https://github.com/quickstrom/quickstrom/raw/main/examples/AudioPlayer.html -o␣
→˓AudioPlayer.html

If you don’t have curl installed, you can download it from this URL using your web browser. Make sure you’ve saved
it our working directory as AudioPlayer.html.

$ ls
AudioPlayer.html

OK! We’re now ready to write our specification.

A Minimal Specification

We’ll begin by writing a specification that always makes the tests pass. Create a new file AudioPlayer.spec.purs
and open it in your text editor of choice:

$ touch AudioPlayer.spec.purs
$ $EDITOR AudioPlayer.spec.purs

Type in the following in the file and save it:

1 module AudioPlayer where
2

3 import Quickstrom
4 import Data.Maybe (Maybe(..))
5

6 readyWhen :: Selector
7 readyWhen = ".audio-player"
8

9 actions :: Actions
10 actions = clicks
11

12 proposition :: Boolean
13 proposition = true

A bunch of things are going on in this specification. Let’s break it down line by line:

• Line 1: We declare the AudioPlayermodule. We must have a module declaration, but it can be named whatever
we like.

• Line 3-4: We import the Quickstrom module. This is where we find definitions for DOM queries, actions, and
logic. We also import Maybe which we’ll need later on.

• Line 6-7: The readyWhen definitions tells Quickstrom to wait until there’s an element in the DOM that matches
this CSS selector. After this condition holds, Quickstrom will start performing actions. We use .audio-player
as the selector, which is used as a class for the top-level div in the audio player web application.

16 Chapter 2. Staying Updated

https://github.com/quickstrom/quickstrom/raw/main/examples/AudioPlayer.html

Quickstrom Documentation, Release 0.1.0

• Line 9-10: Our actions specify what Quickstrom should try to do. In this case, we want it to click any available
links, buttons, and so on.

• Line 12-13: In the proposition, we specify what it means for the system under test to be valid. For now, we’ll
set it to true, meaning that any behavior is considered valid.

Running Tests

Let’s run some tests!

First, we need a Docker network. Let’s name it quickstrom:

$ docker network create quickstrom

Next, from within your my-first-spec directory, launch a ChromeDriver instance in the background:

$ docker run --rm -d \
--network quickstrom \
--name webdriver \
-v /dev/shm:/dev/shm \
-v $PWD:/my-first-spec \
selenium/standalone-chrome:3.141.59-20200826

Notice how we mount the current working directory to /my-first-spec in the container. We do this to let Chrome
access the AudioPlayer.html file.

Now, let’s launch Quickstrom, again from within your my-first-spec directory:

$ docker run --rm \
--network quickstrom \
-v $PWD:/my-first-spec \
quickstrom/quickstrom \
quickstrom check \
--webdriver-host=webdriver \
--webdriver-path=/wd/hub \
--browser=chrome \
--tests=5 \
/my-first-spec/AudioPlayer.spec.purs \
/my-first-spec/AudioPlayer.html

After some time, you should see an output like the following:

Running 5 tests...

———————————————————————————

20 Actions
Test passed!

———————————————————————————

40 Actions
Test passed!

———————————————————————————
(continues on next page)

2.3. Tutorials 17

Quickstrom Documentation, Release 0.1.0

(continued from previous page)

60 Actions
Test passed!

———————————————————————————

80 Actions
Test passed!

———————————————————————————

100 Actions
Test passed!

———————————————————————————

Passed 5 tests.

Cool, we have it running! So far, though, we haven’t done much testing. Quickstrom is happily clicking its way around
the web application, but whatever it finds we say “it’s all good!” Let’s make our specification actually say something
about the audio player’s intended behavior.

Refining the Proposition

Our system under test (AudioPlayer.html) is very simple. There’s a button for playing or pausing the audio player,
and there’s a time display.

Our specification will describe how the player should work. Informally, we state the requirements as follows:

• Initially, the player should be paused

• When paused, and when the play/pause button is clicked, it should transition to the playing state

• When in the playing state, the time display should reflect the progress with a ticking minutes and seconds
display

• When playing, and when the play/pause button is clicked, it should go to the paused state

• In the paused state, the button should say “Play”

• In the playing state, the button should say “Pause”

Let’s translate those requirements to a formal specification in Quickstrom.

Begin by defining two helpers, extracting the text content of the time display and the play/pause button. Place these
definitions at the bottom of AudioPlayer.spec.purs:

timeDisplayText :: Maybe String
timeDisplayText =
map _.textContent (queryOne ".time-display" { textContent })

buttonText :: Maybe String
buttonText =
map _.textContent (queryOne ".play-pause" { textContent })

Next, we’ll change the proposition. Remove true and type in the following code:

18 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.1.0

proposition :: Boolean
proposition =
let
playing = ?playing

paused = ?paused

play = ?play

pause = ?pause

tick = ?tick
in
paused && always (play || pause || tick)

All those terms prefixed with question marks are called holes. A hole is a part of a program that is yet to be written,
like a placeholder. We’ll fill the holes one by one.

The last line in our proposition can be read in English as:

Initially, the record player is paused. From that point, one can either play or pause, or the time can tick
while playing, all indefinitely.

OK, onto filling the holes!

Filling Holes in the Specification

Let’s start with the definitions that describe states that the program can be in.

The playing definition should describe what it means to be in the playing state. We specify it by stating that the
button text should be “Pause”. Replace ?playing with the following expression:

buttonText == Just "Pause"

The Just "Pause" means that there is a matching element with text content “Pause”. Nothing would mean that the
query didn’t find any element.

Similary, the paused state is defined as the button text being “Play”. Replace ?paused with:

buttonText == Just "Play"

We’ve now specified the two states that the audio player can be in. Next, we specify transitions between states.

The definition play describes a transition between paused and playing. Replace the hole ?play with the following
expression:

paused && next playing

OK, so what’s going on here? We specify that the current state is paused, and that the next state is playing. That’s
how we encode state transitions.

The pause transition is similar. Replace ?pause with the following expression:

playing && next paused

Finally, we have the tick. When we’re in the playing state, the time display changes its text on a tick. The displayed
time should be monotonically increasing, so we compare alphabetically the current and the next time.

2.3. Tutorials 19

Quickstrom Documentation, Release 0.1.0

Replace the hole ?tick with the following expression:

playing
&& next playing
&& timeDisplayText < next timeDisplayText

If the time display would go past “99:59”, we’d get into trouble with this specification. But because we won’t run tests
for that long, we can get away with the string comparison.

That’s it! We’ve filled all the holes. Your proposition should now look something like this:

proposition :: Boolean
proposition =
let
playing = buttonText == Just "Pause"

paused = buttonText == Just "Play"

play = paused && next playing

pause = playing && next paused

tick =
playing
&& next playing
&& timeDisplayText < next timeDisplayText

in
paused && always (play || pause || tick)

Let’s run some more tests.

Catching a Bug

Run Quickstrom again, now that we’ve fleshed out the specification:

$ docker run --rm \
--network quickstrom \
-v $PWD:/my-first-spec \
quickstrom/quickstrom \
quickstrom check \
--webdriver-host=webdriver \
--webdriver-path=/wd/hub \
--browser=chrome \
--tests=5 \
/my-first-spec/AudioPlayer.spec.purs \
/my-first-spec/AudioPlayer.html

You’ll see a bunch of output, involving shrinking tests and more. It should end with something like the following:

1. State
• .play-pause

-
- property "textContent" = "Play"

• .time-display
(continues on next page)

20 Chapter 2. Staying Updated

Quickstrom Documentation, Release 0.1.0

(continued from previous page)

-
- property "textContent" = "00:00"

2. click button[0]
3. click button[0]
4. State
• .play-pause

-
- property "textContent" = "Play"

• .time-display
-

- property "textContent" = "NaN:NaN"

Failed after 1 tests and 4 levels of shrinking.

Whoops, look at that! It says that the time display shows “NaN:NaN”. We’ve found our first bug using Quickstrom!

Open up AudioPlayer.html, and change the following lines near the end of the file:

case "pause":
return await inPaused();

They should be:

case "pause":
return await inPaused(time); // <-- this is where we must pass in time

Rerun the tests using the same quickstrom command as before. All tests pass!

Are we done? Is the audio player correct? Not quite.

Transitions Based on Time

The audio player transitions between states mainly as a result of user action, but not only. A tick transition (going
from playing to playing with an incremented progress) is triggered by time.

We’ll try tweaking Quickstrom’s options related to trailing state changes to test more of the time-related behavior of
the application.

Run new tests by executing the following command:

$ docker run --rm \
--network quickstrom \
-v $PWD:/my-first-spec \
quickstrom/quickstrom \
quickstrom check \
--webdriver-host=webdriver \
--webdriver-path=/wd/hub \
--browser=chrome \
--tests=5 \
--max-trailing-state-changes=1 \
--trailing-state-change-timeout=500 \
/my-first-spec/AudioPlayer.spec.purs \
/my-first-spec/AudioPlayer.html

You should see output such as the following:

2.3. Tutorials 21

Quickstrom Documentation, Release 0.1.0

1. State
• .play-pause

-
- property "textContent" = "Play"

• .time-display
-

- property "textContent" = "00:00"
2. click button[0]
3. State
• .play-pause

-
- property "textContent" = "Play"

• .time-display
-

- property "textContent" = "00:01"

Failed after 1 tests and 5 levels of shrinking.

Look, another bug! It seems that there are tick transitions even though the play/pause button indicates that we’re in
the paused state.

In fact, the problem is the button text, not the time display. I’ll leave it up to you to find the error in the code, fix it, and
make the tests pass.

Summary

Congratulations! You’ve completed the tutorial, created your first specification, and found multiple bugs.

Have we found all bugs? Possibly not. This is the thing with testing. We can’t know if we’ve found all problems.
However, Quickstrom tries very hard to find more of them for you, requiring less effort.

This tutorial is intentionally fast-paced and low on theory. Now that you’ve got your hands dirty, it’s a good time to
check out The Specification Language to learn more about the operators in Quickstrom.

2.4 How-To Guides

Achieve specific goals with these cookbook-style guides. They’re not as thorough as the Tutorials and normally expect
you to know how to set up and run Quickstrom already.

2.4.1 Broken Links

This is simple specification used for finding broken internal links. External links are not followed. It’s based on Domen
Kožar’s gist.1

module BrokenLinks where

import Quickstrom
import Data.Foldable (any)
import Data.Maybe (maybe)

(continues on next page)

1 Domen Kožar wrote the original specification for Cachix and published it along with a GitHub Actions setup: https://gist.github.com/
domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad

22 Chapter 2. Staying Updated

https://cachix.org
https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad
https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad

Quickstrom Documentation, Release 0.1.0

(continued from previous page)

import Data.Tuple (Tuple(..))
import Data.String.CodeUnits (contains)
import Data.String.Pattern (Pattern(..))

readyWhen = "body"

actions :: Actions
actions = [

-- Only links beginning with a slash are followed. We
-- could also use an absolute base URL, e.g:
--
-- click "a[href^='https://example.com']"
--
click "a[href^='/']"

]

-- We're interested in finding links that lead to pages
-- rendered with these status codes in the heading.
patterns = map Pattern ["404", "500"]

-- In our system's error pages, status codes are rendered
-- in an <h1> element.
heading =

maybe "" _.textContent (queryOne "h1" { textContent })

-- Check if the heading has any of the error codes in the
-- text.
hasErrorCode =

any (\p -> contains p heading) patterns

-- This is the safety property. At no point, following
-- only internal links, should we see error codes.
proposition = always (not hasErrorCode)

Tweak the patterns and the precicate to fit your use case. You might not have status codes rendered, but texts like “Page
not found”.

2.4.2 Testing in GitHub Actions

Quickstrom can be run in a continuous integration (CI) workflow to find problems early. Here’s a configuration for
GitHub Actions that checks a website on every commit to the main branch. It’s based on Domen Kožar’s gist.1

name: "Quickstrom integration tests"
on:
push:
branches:
- main

jobs:
build:

(continues on next page)

1 Domen Kožar wrote the original GitHub Action configuration for Cachix: https://gist.github.com/domenkozar/
71135bf7aa6d50d6911fb74f4dcb4bad

2.4. How-To Guides 23

https://cachix.org
https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad
https://gist.github.com/domenkozar/71135bf7aa6d50d6911fb74f4dcb4bad

Quickstrom Documentation, Release 0.1.0

(continued from previous page)

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2.3.4

We use `install-nix-action` and `cachix-action` to quickly install the
latest Quickstrom from a binary cache.
- uses: cachix/install-nix-action@v12
- uses: cachix/cachix-action@v8
with:
name: quickstrom

- run: nix-env -iA quickstrom -f https://github.com/quickstrom/quickstrom/tarball/
→˓main

We install and run Geckodriver in the background, so that we can run
tests using Firefox.
- run: nix-env -i geckodriver -f https://github.com/NixOS/nixpkgs/tarball/nixos-21.05
- run: geckodriver&

Finally, run tests! This assumes there's a file called
`example.spec.purs` in the root of the GitHub repository.
- run: quickstrom check example.spec.purs https://example.com

Replace the placeholder paths and URLs.

Next Steps

• You might want to run tests in Chrome instead. See Checking for instructions on using other browsers.

• If you’d like to check multiple specs and in multiple browsers, see matrix configurations in the GitHub Actions
documentation.

2.5 FAQ

Here are some frequently asked questions about Quickstrom:

2.5.1 Isn’t this just property-based testing for web applications?

Well, not exactly. Quickstrom definitely is a form of property-based testing (PBT), but it’s not only that. Being specif-
ically designed for testing web applications, Quickstrom can reduce the amount of work you need to do in order to test
properties of your system:

• Quickstrom discovers and performs actions automatically

• You specify only the properties you care about, and you don’t have to write a fully functional model

• Quickstrom aims to (in the future) perform fault injection automatically, such as delaying, cancelling, or manip-
ulating XHR responses, run in concurrent tabs, manipulate cookies or web storage, etc

It might be useful to think of Quickstrom as a mix of PBT, black-box browser testing, and a specification system like
TLA+. One aim is “to be the Jepsen for web applications.”

24 Chapter 2. Staying Updated

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idstrategymatrix
http://jepsen.io/

Quickstrom Documentation, Release 0.1.0

2.5.2 Why should I use Quickstrom instead of a model-based property test?

You might argue that this is just property-based testing, and that you could do this with state machine testing. And
you’d be right! Similar tests could be written using a state machine model, WebDriver, and property-based testing.

With Quickstrom, however, you don’t have to write a model that fully specifies the behavior of your system. Instead,
you describe the most important state transitions and leave the rest unspecified. You can gradually adopt Quickstrom
and improve your specifications over time.

Furthermore, in problem domains where there’s lots of of essential complexity, models tend to become as complex.
For example, it’s often hard to find a naive implementation for your model when your modelling a business system with
a myriad of arbitrary rules.

2.5. FAQ 25

	Documentation
	Staying Updated
	Installation
	Installing with Nix
	Prerequisites
	Installing with Nix

	Installing with Docker
	Installing a WebDriver Server

	Accessing a Server on the Host

	Topics
	How It Works
	The Specification Language
	Queries
	Temporal Operators
	Always
	Until
	Next
	Unchanged

	Actions
	Action Sequences
	Actions
	Example

	Checking
	Cross-Browser Testing
	WebDriver Options

	Trailing State Changes
	Command-Line Options

	Reporters
	Console
	HTML
	JSON

	Troubleshooting
	No WebDriver Session

	Tutorials
	Writing Your First Specification
	Installing with Docker
	Downloading the Audio Player
	A Minimal Specification
	Running Tests
	Refining the Proposition
	Filling Holes in the Specification

	Catching a Bug
	Transitions Based on Time
	Summary

	How-To Guides
	Broken Links
	Testing in GitHub Actions
	Next Steps

	FAQ
	Isn’t this just property-based testing for web applications?
	Why should I use Quickstrom instead of a model-based property test?

